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Abstract
Parafermions of orders 2 and 3 are shown to be the fundamental tool to construct
superspaces related to cubic and quartic extensions of the Poincaré algebra. The
corresponding superfields are constructed, and some of their main properties
are analyzed in detail. In this context, the existence problem of operators
acting like covariant derivatives is analyzed, and the associated operators are
explicitly constructed.

PACS numbers: 03.65.Fd, 11.10.Kk, 11.30.Ly

1. Introduction

The question whether symmetric and antisymmetric functions are the only physically
acceptable types for eigenfunctions can be traced back to the beginning of quantum mechanics
and was generally answered in the affirmative until the discovery of new particles and
resonances forced to reconsider the possibility of alternative symmetry types.

The first developments on intermediate statistics were developed in 1940, at the same
time of Pauli’s theorem [1]. In this work, the combinatorial method of Bose was used to
infer an expression for the average number of particles in a set of states that is independent
on the maximal number of particles that occupy a given state. The ansatz was mainly based
on the first-quantized formulation of statistics, and therefore this approach was not entirely
satisfactory from the quantum field theoretic point of view. In 1953, Green introduced what is
now known as paraquantization [3, 4], leading to two families of generalized statistics, each
one containing one of the classical Bose and Fermi statistics types. This pioneering work
was later developed and refined by Greenberg and Messiah [5, 6], who settled under which
conditions parastatistics do not contradict established experimental facts.

The discovery of the �−-hadron in 1964 was not only one of the first successes of
the symmetry approach to elementary particle classification, to be further worked out in
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subsequent years (finally leading to the standard model), but also pointed out some difficulties
that were not entirely understood and explained until the overflow of particle discoveries in
the 1950s and 1960s. The quark content of �−, following from the flavor classification of
hadrons, apparently meant an evidence to the negative for the Pauli exclusion principle, which
reopened the discussion on its range of validity and its exact interpretation with respect to
the underlying statistics. This fact, along with other minor incompatibilities observed earlier,
showed that some fundamental characteristics were still to be discovered and suggested that the
newly introduced quarks obeyed not the usual Fermi statistics, but some type of intermediate
statistics. Actually this assumption on the para-particle character of quarks provided an
alternative solution to the introduction of a threefold degree of freedom for quarks (the
colour quantum number) that gave birth to quantum chromodynamics (QCD). However, since
parastatistics was not amenable to gauging, the idea of paraquantization as a description of a
fundamental symmetry for the quarks was abandoned to the benefit of QCD or more generally
of gauge theory.

Subsequently, the gauge principle becomes central in the description of fundamental
interactions. This principle together with a series of no-go theorems [7] led to the dominant
framework for a description of physics beyond the standard model, namely to supersymmetry
or supergravity. Supersymmetries (resp. gauge theories) are based on Lie superalgebras (resp.
Lie algebras) which are binary algebras. In spite of the great success of gauge theories and
supergravity, one may wonder whether or not some different algebraic structures could play a
role in physics, and in particular higher order algebras. This is an interesting question because
not until recently were the binary algebras (Lie superalgebras) dominating the description of
the symmetries in particle physics. Indeed, it was realized that higher order algebras could play
some roles in physics. For instance, a ternary algebra defined by a fully antisymmetric product
appears in the description of multiple M2-branes [8]. Similarly, higher order extensions of the
Poincaré algebra were defined without contradicting the no-go theorems [9] and implemented
into the quantum field theory (QFT) frame. Then, despite many efforts, the construction of
an adapted ‘superspace’ associated with these latter higher order extensions was not known.
The purpose of this paper is to show that parafermions are the basing building block for the
construction of a superspace associated with the higher order extensions of the Poincaré algebra
considered in [9]. This means that parafermions reappear for the description of symmetries in
physics, but in a different context compared to its historical consideration.

In a series of papers, F-ary extensions (F > 2) of Lie superalgebras, called Lie algebras
of order F, were introduced and analyzed [9–12]. It was then rapidly realized that these
new algebraic structures could be used to define higher order extensions of the Poincaré
algebra. Among various possibilities, a specific cubic extension of the Poincaré algebra in any
spacetime dimensions was intensively studied in [13–15] and implemented into QFT. However,
this program to investigate new types of non-trivial extensions of the Poincaré algebra partially
failed. Indeed, at present, only invariant-free Lagrangians have been constructed. It was even
proven that, in four spacetime dimensions, for specific types of multiplets, no interaction terms
were possible [14]. In order to construct invariant interacting Lagrangians, one of the most
promising alternatives would be to identify some adapted ‘F-ary superspace’, where the higher
order symmetries would be realized by means of differential operators. Such a construction
has indeed been considered by several authors in one or two spacetime dimensions, where
the situation is somewhat exceptional (the Lorentz algebra being either trivial or Abelian)
[16], and a nice geometrical interpretation was given in [17]. It seemed, however, that the
success of such models were deeply related to the low dimension, and as soon as the spacetime
dimension is higher than 3, no corresponding superspace has been identified. This obstruction
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is certainly due, at least in part, to the type of algebras considered, which are ternary (and in
general F-ary) instead of binary.

Among the main difficulties arising in non-binary approaches, we observe that it is
not possible to order a given monomial in a definite order, implying that finite dimensional
representations are automatically non-faithful [9, 11]. Despite these difficulties, it was recently
realized that Lie algebras of order F share some similarities with Lie superalgebras. A formal
study of Lie algebras of order 3 gives rise to two interesting results. The first important
result in this direction is the construction of groups associated with Lie algebras of order
3. Furthermore, the parameters of the transformations have been identified and correspond
to the natural cubic extension of the Grassmann algebra, called the three-exterior algebra
(see (3.1) below) introduced by Roby [18]. These similarities enable the construction of
matrix representations of groups associated with Lie algebras of order 3, in terms of matrices,
the entries of which belong to the three-exterior algebra [11], in straight analogy with Lie
supergroups.

Since the parameters of the transformations generate the three-exterior algebra, it is natural
to postulate that these variables generate also the superspace corresponding to the ternary
extensions of the Poincaré algebra we are considering. Imposing that a differential realization
of the algebra is obtained by means of the new variables and some associated differential
operator automatically leads to a parafermionic algebra [3, 4]. It is very interesting to note
that two different structures, which have a priori no relation, can be unified by this ansatz.
The question whether these two structures (parafermions and Lie algebras of order F) have
some hidden relations arises at once.

The content of this paper is as follows. In section 2, the mean features of Lie algebras of
order F (F > 1) are recalled together with some emphasis on the cubic and quartic extensions
of the Poincaré algebra relevant in the sequel. In section 3, it is shown that parafermions (of
order 2 for ternary extensions and of order 3 for quaternary extensions) are the fundamental
objects to define a superspace associated with the cubic/quartic extension of the Poincaré
algebra considered. It is also shown, studying quartic extensions in any spacetime dimensions,
that the case D = 1 + 9 is very special. In this particular case, a quaternary superspace can be
constructed using usual fermions. Moreover, it is interesting to note that this quartic extension
presents some analogy with type IIA supersymmetry. Section 4 is devoted to the study of two
types of superfields, as well as the construction of certain operators which can be interpreted as
a covariant derivative. It turns out that the implications of these operators for cubic and quartic
extensions differ in some fundamental aspects. Some conclusions on these constructions are
drawn in section 5.

Finally, we mention for completeness that there has been also some revival of interest
for parafermions and parabosons, in a rather different context. In [19], it was realized
that paraquantization is related to Lie superalgebras, and in [20] parafermions were the
basic building block to construct some parafermionic extensions of the Poincaré algebra
in the context of para-superalgebras. In [21], it was shown that some purely parabosonic
(parfermionic) systems are described by a hidden nonlinear (polynomial) supersymmetric
quantum mechanics.

2. Lie algebras of order 3

In this section, we recall the basic properties of Lie algebras of order F > 2. We also
recall the main features of cubic and quartic extensions of the Poincaré algebra that will be
relevant in the sequel. Higher order algebraic structures, called Lie algebras of order F, and
generalizing Lie (super)algebras were introduced in [9]. Complex and real Lie algebras of
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any order F > 2 may be defined. In this paper, we study more precisely elementary real
Lie algebras of orders 3 and 4. An elementary (real) Lie algebra of order F is given by
g = g0 ⊕ g1 = 〈Xi, i = 1, . . . , dim g0〉 ⊕ 〈Ya, a = 1, . . . , dim g1〉, where g0 is a real Lie
algebra and g1 is a real representation of g0, satisfying the following brackets:

[Xi,Xj ] = fij
kXk, [Xi, Ya] = Ria

bYb,{
Ya1 , . . . , YaF

} =
∑
σ∈SF

Yaσ(1)
· · ·Yaσ(F)

= Qa1···aF

iXi,
(2.1)

(where SF is the group of permutations of F elements) and fulfilling the following Jacobi
identities for any Ya1 , . . . , YaF+1 in g1:

F+1∑
i=1

[{
Ya1 , . . . , Yai−1 , Yai+1 , . . . , YaF+1

}
, Yai

] = 0. (2.2)

Looking at the various brackets, one immediately observes that a Lie algebra of order F is
endowed with two different products: one binary given by the usual commutators, and one
of order F given by a fully symmetric product. Furthermore, a direct inspection of (2.1) and
(2.2) shows that Lie algebras of order F are F-ary extensions of Lie superalgebras, where the
anticommutator is replaced by a fully symmetric bracket of order F. Many examples of Lie
algebras of order F were given in [9], and a formal study of this type of structure was initiated
in [10–12].

Subsequently, a program of investigation of higher order extensions of the Poincaré
algebra, in the framework of Lie algebras of order F, was undertaken. Among various
possibilities, cubic and quartic extensions of the Poincaré algebra have been defined [9]. The
cubic extension of the Poincaré algebra Iso3(1, 3) = g0 ⊕ g1, with g0 = Iso(1, 3) = 〈Lμν =
−Lνμ, Pμ, 0 � μ, ν � 3〉 generating the Poincaré algebra and g1 = 〈

Vμ, 0 � μ � 3
〉

being
the vector representation, is defined by the brackets

[Lμν, Lρσ ] = ηνσLρμ − ημσLρν + ηνρLμσ − ημρLνσ ,

[Lμν, Pρ] = ηνρPμ − ημρPν, [Lμν, Vρ] = ηνρVμ − ημρVν, [Pμ, Vν] = 0,

{Vμ, Vν, Vρ} = ημνPρ + ημρPν + ηρνPμ,

(2.3)

where ημν = diag(1,−1,−1,−1) is the Minkowski metric.
The quartic extensions of the Poincaré algebra are constructed by considering two

Majorana spinors. In the sl(2, C) ∼= so(1, 3) notations of dotted and undotted indices, a left-
handed spinor is given by ψL

α and a right-handed spinors by ψ̄Rα̇ . The spinor conventions to
raise/lower indices are as follows ψLα = εαβψL

β, ψL
α = εαβψLβ, ψ̄Rα̇ = εα̇β̇ ψ̄R

β̇ , ψ̄R
α̇ =

εα̇β̇ ψ̄Rβ̇ with (ψα)∗ = ψ̄α̇, ε12 = ε1̇2̇ = −1, ε12 = ε1̇2̇ = 1. The 4D Dirac matrices, in the
Weyl representation, are

γμ =
(

0 σμ

σ̄μ 0

)
, (2.4)

with σμαα̇ = (1, σi), σ̄ α̇α
μ = (1,−σi), where σi, i = 1, 2, 3, are the Pauli matrices. With

these notations, we introduce two series of Majorana spinors QI
α, Q̄I α̇ satisfying the relation

(QI
α)† = Q̄I α̇ and define the quartic extensions of the Poincaré algebra (we only give the

quartic brackets) by{
QI1

α1 ,Q
I2

α2 ,Q
I3

α3 ,Q
I4

α4

} = 0{
QI1

α1 ,Q
I2

α2 ,Q
I3

α3 ,QI4 α̇4

} = 2i
(
δI1

I4ε
I2I3εα2α3σ

μ
α1α̇4

+ δI2
I4ε

I1I3εα1α3σ
μ
α2α̇4

+ δI3
I4ε

I1I2εα1α2σ
μ
α3α̇4

)
Pμ{

QI1
α1 ,Q

I2
α2 ,QI3 α̇3 ,QI4 α̇4

} = 0,

(2.5)
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the remaining brackets involving three Q̄ and one Q or four Q̄ are obtained by Hermitian
conjugation of the corresponding equation in (2.5) and P †

μ = −Pμ.3 In (2.5), εIJ is the SU(2)

invariant tensor given by ε12 = −ε21 = 1. This tensor enables us to define SU(2)-invariant
or equivalently to raise or lower the indices. We define QI α = εIJ QJ

α , with εIJ εJK = δI
K .

The cubic extension (2.3) was intensively studied in the framework of quantum field theory
[13, 14, 22, 23]. However, it has been proven in [14] that in four-dimensional spacetime, and
for a specific representation of (2.3), no interacting terms are allowed. In order to get more
precise insight of the above higher order extensions, and to identify interesting representations
of (2.3) or (2.5), one possible direction would be to construct an adapted superspace, where
the algebra is realized upon differential operators.

3. Superspace for higher order extensions of the Poincaré algebra

In this section, we construct an adapted superspace leading to an ad hoc realization of
the algebras (2.3) and (2.5). More precisely, we introduce adapted variables such that the
transformations generated by V and Q correspond to a translation in some appropriate ‘internal’
space hereafter called superspace. We impose further that the algebra is realized by means of
differential operators. The various variables and differential operators, together with the basic
relations they have to satisfy, will be introduced progressively. It appears at the very end that
the order 2/3 parafermions turn out to be the relevant variables [2]. Moreover, it is important
to emphasize that the parafermionic variables appear quite naturally, but in a different way as
they appeared historically in the literature [3, 4]. Since the construction is analogous for the
cubic algebra (2.3) and for the quadratic algebra (2.5), in the next subsection we construct
the (ternary) superspace associated with (2.3) with many details. Subsection 3.2 is devoted to
the analogous construction in the quartic case. However, it will be shown that the latter case
exhibits an exceptional behaviour, and a quaternary superspace can even be constructed with
fermions.

3.1. Ternary superspace

A major progress toward the understanding of Lie algebras of order 3 was achieved when it
was realized that groups associated with Lie algebras of order 3 may be defined [11]. Indeed,
it was a priori not obvious that groups associated with ternary algebras can be defined, since
for a group the multiplication of two elements is always defined, although for a ternary algebra
only the multiplication of three elements is defined. Moreover, the group structure enables
us to identify the parameters of the transformation [11]. These parameters turn out to be
the natural cubic generalization of the Grassmann algebra (or the exterior algebra) called the
three-exterior algebra. This algebra is generated by four real variables θμ which are in the
vector representation of the Lorentz algebra and which satisfy the cubic relation

{θμ, θν, θρ} = θμθνθρ + θνθρθμ + θρθμθν + θμθρθν + θνθμθρ + θρθνθμ = 0. (3.1)

This algebra can be defined over the real or complex fields. For more details concerning
the three-exterior algebra, one can see e.g. [11]. In the following, we only consider the real
three-exterior algebra. This algebra was introduced long time ago by Roby [18], and for that
reason we will call it from now on the Roby algebra. Since the transformation parameters
belong to the Roby algebra, it is natural to postulate that the superspace is generated by

X = (xμ, θμ), (3.2)

3 With our conventions since there is no i factors in the commutators, we have that Pμ = ∂μ; thus, the physical
quadri-momentum is given by −iPμ.
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where xμ belongs to the Minkowski spacetime and θμ are the generators of the Roby
algebra. This identification is the natural cubic extension of the superspace considered in
usual supersymmetric theories.

We further need to introduce the notion of ‘conjugate’ momentum of the variables X.
To this extent, we have to identify some derivative ∂μ associated with the variables θμ. To
identify the action of ∂μ on the θν , we assume further that a differential realization of the
Lorentz algebra can be constructed from the variables θ and their derivative ∂ . We know that
the variables θ are Lorentz vectors. Following Green [3, 4], the more general quantization
which ensures that θμ are vectors of the Lorentz algebra is given by the parafermions4. We
thus assume the parafermionic relations

[[θμ, θν], θρ] = 0, [[θμ, θν], ∂ρ] = −δμ
ρθ

ν + δν
ρθ

μ,

[[θμ, ∂ν], θρ] = δν
ρθμ, [[θμ, ∂ν], ∂ρ] = −δμ

ρ∂ν,

[[∂μ, ∂ν], θρ] = −δμ
ρ∂ν + δν

ρ∂μ [[∂μ, ∂ν], ∂ρ] = 0.

(3.3)

It should be noted that not all the relations (3.3) are independent, and some are related through
Jacobi identities. As a consequence, if we define

Jμν = [θν, ∂μ] − [θμ, ∂ν], (3.4)

the relations (3.3) ensure that (3.4) act correctly on θ and ∂:

[Jμν, θρ] = ηνρθμ − ημρθν. (3.5)

Introducing further Pμ, the conjugate momentum of xν ([Pμ, xν] = δμ
ν), we thus define the

Lorentz generators as

Lμν = xνPμ − xμPν + Jμν. (3.6)

Since we are considering ternary algebras involving fully symmetric products, putting
(3.1) and (3.3) together shows explicitly that we are considering parafermions of order 2. This
means that relations (3.1) have to be supplemented by [4]5

{θμ, θν, θρ} = 0,

{θμ, θν, ∂ρ} = 2δμ
ρθ

ν + 2δν
ρθ

μ,

{θμ, ∂ν, ∂ρ} = 2δμ
ν∂ρ + 2δμ

ρ∂ν,

{∂μ, ∂ν, ∂ρ} = 0.

(3.7)

It is interesting to observe that the construction leading to (3.7) and (3.3) goes in reverse
order to that of parafermionic algebras. Historically, parafermions were defined by means of
equation (3.3), in order to realize the Lorentz algebra. After all the order of paraquantization
(here two, but in general p) are specified by assuming on which representation of the
Lorentz algebra the parafermionic algebra acts. Order p parafermionic algebras involved
fully symmetric brackets of order p + 1 and, in particular, order 2 parafermionic algebras
give rise to the brackets (3.7). However, in our construction, the cubic brackets (3.1) are
obtained from the very beginning, by our superspace assumption. Finally, note that the order 2
parafermionic algebra (3.3), (3.7) is a non-faithful representation of the algebra (3.2) since with
respect to the Roby algebra we have one more relation [[θμ, θν], θρ] = 0. In particular, it turns
out that the Roby algebra is infinitely generated [18, 11], although the order 3 parafermionic
algebra is finite dimensional (see section 4).

4 Or parabosons, but the parabosonic algebra is incompatible with requirement (3.1).
5 In the literature, the brackets (3.3) and (3.7) are unified: 〈θμ, ∂ρ, θν〉 = δμ

ρθν + δν
ρθμ, 〈θμ, θν, ∂ρ〉 = δν

ρθμ,
where 〈A, B, C〉 = ABC + CBA, etc.
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However, we cannot expect to construct a differential operator Vμ from ∂μ and θμ acting
on θμ and satisfying the cubic relations (2.3). Indeed, the relations (3.3) and (3.7) are cubic,
meaning that no bilinear relations upon θμ and ∂ν are given and consequently no action of
∂μ on θν is specified6. This situation is very similar to the implementation of the Noether
theorem within the framework of ternary symmetries, where the conserved charges generate
the symmetry through quadratic relations using the usual quantization procedure (e.g. the
equal-time (anti)-commutation relations) [13, 22, 23]. We have shown in [13, 22] that if we
have an invariant Lagrangian L(�) (where � is a given multiplet of the algebra (2.3)) with
conserved charges L̂μν, P̂μ, V̂μ such that after quantization we have the transformation laws
[L̂μν,�], [P̂μ,�], [V̂μ,�], the algebra is realized through multiple-commutators

[V̂μ, [V̂ν, [V̂ρ,�]]] + perm. = ημν[P̂ρ,�] + ηνρ[P̂μ,�] + ημρ[P̂ν,�]. (3.8)

This procedure is standard in the implementation of Lie (super)algebra in quantum field theory,
but the equation corresponding to (3.8) in this case is not the end of the story since the Jacobi
identities allow us to obtain a relation which is independent of the fields �. But here, in the
context of ternary symmetries, the situation is very different, since the Jacobi identities (2.2)
do not allow us to write the algebra in a � independent form. This weaker realization of
the algebra has the interesting consequence that it enables us to consider algebraic structure
(in quantum field theories), different from Lie superalgebras, without contradicting the spin-
statistics theorem (see [23] for a discussion). Finally, it is a matter of calculation to check that
the Jacobi identities are satisfied by the realization (3.8).

As we have recalled briefly, the implementation of the Noether theorem in higher order
algebras automatically leads to an algebraic realization through multiple commutators. Since
for the parafermionic algebra, the natural action is defined also by means of commutators
(see (3.3)), it is tempting to try to define a superspace in which the algebra is realized in the
form of (3.8). Then, the parafermionic algebra will be the cornerstone of the realization of
the algebra (2.3) on the superspace X = (xμ, θμ). We then introduce the parameters of the
transformations εμ such that we have the transformation

θμ → θ ′μ = θμ + εμ,

under (2.3). This means that the variables θ ′ are of the same type as the variables θ . So
do the variables ε. Now we would like to define the generators of our algebra. The algebra
(2.3) is cubic and the variables ε satisfies also the cubic relations (3.3) and (3.7). It is known
that in general the tensor product of two algebras has no meaning (and this is an even more
difficult task for algebras defined by cubic relations like (2.3) and (3.7), (3.3)). We thus
assume that the variables ε and the generators of the transformation are indissociable. Since
for the para-Grassmann algebra the natural objects are the commutators, it is natural to define
V by means of a commutator. There are two parts in the generators V, one leading to the
transformations on the variables θ and one transforming the variables x: V = Vθ + Vx such
that [Vθ , x] = 0 and [Vx, θ ] = 0. Having only the variables θμ and the parameters εμ, it is
not difficult to observe that it is not possible to define a Vx commuting with the θ ’s and being
a Lorentz scalar. We thus introduce one more parameter θ which is a paragrassmann variable
in the scalar representation of the Lorentz algebra7 such that

V = [εμ, ∂μ] + [θ, θμ][εσ , θμ]Pσ , (3.9)

6 It is possible, however, to obtain matrix representations of (2.3) by postulating cubic relations analogous to (3.7)
of [13].
7 This additional variable can be understood as coming from a compactification of the (1 + 4)D to the (1 + 3)D
Minkowski spacetime. Thus, (θμ, θ) is in the vector representation of SO(1, 4).
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which gives

δθα = [V, θα] = εα, δxα = [V, xα] = [θ, θμ][εα, θμ]. (3.10)

It is important to realize that the δxα are commuting real variables.
Having constructed a differential realization of the cubic extension of the Poincaré algebra

(2.3), we are now looking for the closure of the algebra. We have to check the algebra in the
sense of (3.8) on any monomial in θ . In particular, we have

[V1, [V2, [V3, θ
α1θα2θα3 ]]] = ε

α1
1 ε

α2
2 ε

α3
3 + ε

α1
2 ε

α2
3 ε

α3
1 + ε

α1
3 ε

α2
1 ε

α3
2

+ ε
α1
1 ε

α2
3 ε

α3
2 + ε

α1
2 ε

α2
1 ε

α3
3 + ε

α1
3 ε

α2
2 ε

α3
1 , (3.11)

which is fully symmetric in the indices 1, 2, 3. This means that [V1, [V2, [V3, θ
α1θα2θα3 ] +

perm. never vanishes (in order to simplify the notations, we denote V1.V2.V3.θ =
[V1, [V2, [V2, θ ]]] and {V1, V2, V3}.θ = [V1, [V2, [V2, θ ]]] + perm. etc). It turns out that
this problem is independent of the realization of the operator V. Actually, if we simply assume
to have an operator δ such that δ.θ = ε, together with the Leibniz rule, we automatically
have for δ1δ2δ3(θ

α1θα2θα3) the RHS of (3.11). In fact this discrepancy is already present in
supersymmetric theories. But in this case, since the parameters are anticommuting Grassmann
parameters, the natural solution is to replace anticommutators by commutators when the
parameters are taken into account. In our case, we have some analogy to the procedure above.
Recall that the formal study of Lie algebras of order 3 [11] leads naturally to a Z3-twisted
tensor product. This means, in particular, that if we consider three successive transformations
ε1, ε2, ε3, we have a Z3 ×Z3 ×Z3 graded structure. As a consequence, the algebraic structure
which emerges from this grading is a ternary analog of the color algebras where the bracket
is no more fully symmetric [24]8. This means that, as in the case of usual Lie algebras,
the introduction of the parameters of the transformation forces us to consider a different,
but related algebraic structure. This can be seen as some analogy to the Jordan–Wigner
transformations in that context. This is the inverse process of the decoloration theorem proved
in [12], which states that a ternary color algebra is isomorphic to a Lie algebra of order 3.
Ternary color algebras have been studied in [12]. The basic tool to define color algebras is a
grading determined by an Abelian group. Here the grading group is given by Z3 × Z3 × Z3.
The latter, besides defining the underlying grading in the structure, moreover provides a new
object known as the commutation factor defined by

N(
a, 
b) = qa1(b2+b3)+a2b3−b1(a2+a3)−b2a3 , (3.12)

where q = e
2iπ
3 and 
a, 
b ∈ Z

3
3. The trilinear bracket is now defined by (there are also some

additional Jacobi identities which are however not relevant for our analysis)

{|V1, V2, V3|}N = V1V2V3 + N(gr(ε1), gr(ε2) + gr(ε3))V2V3V1

+ N(gr(ε1) + gr(ε2), gr(ε3))V3V1V2

+ N(gr(ε2), gr(ε3))V1V3V2 + N(gr(ε1), gr(ε2))V2V1V3

+ N(gr(ε1), gr(ε2))N(gr(ε1), gr(ε3))N(gr(ε2), gr(ε3))V3V2V1. (3.13)

In our case, with the commutation factor given by (3.12), and gr(ε1) = (1, 0, 0), gr(ε2) =
(0, 1, 0), gr(ε3) = (0, 0, 1), the cubic brackets adopt the following form:

{|V1, V2, V3|}N = V1V2V3 + q2V2V3V1 + q2V3V1V2 + qV1V3V2 + qV2V1V3 + V3V2V1. (3.14)

8 Color algebras were introduced as a possible generalization of Lie (super)algebras, where the brackets are neither
symmetric nor antisymmetric. In the various brackets the usual plus or minus sign of the (anti)commutators is
substituted by a commutation factor.
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In particular, since the constraint 1 + q + q2 = 0 is satisfied and V1.V2.V3.(θ
α1 · · · θαn) is fully

symmetric in the subindices 1, 2, 3, we automatically have that

{|V1, V2, V3|}N .(θα1 · · · θαn) = 0.

Performing a similar computation for the spacetime coordinates, we obtain the identities

{|V1, V2, V3|}N.xα = −q2
[
θ, ε

μ

2

][
εα

3 , ε1μ

] − q2
[
θ, ε

μ

1

][
εα

3 , ε2μ

]
− [

θ, ε
μ

2

][
εα

1 , ε3μ

] − [
θ, ε

μ

3

][
εα

1 , ε2μ

]
− q

[
θ, ε

μ

1

][
εα

2 , ε3μ

] − q
[
θ, ε

μ

3

][
εα

2 , ε1μ

] = aα. (3.15)

It is important to note that the aβ are complex numbers. This means that the ‘coloration’ of
the algebra Iso3(1.3), coming from our adapted Jordan–Wigner transformation, gives rise to
the algebra (3.14), which is manifestly a complex algebra since the structure constants are
complex. In fact, since Z

3
3 is complex, the grading makes sense only in a complexification

Iso3(1.3) ⊗R C of the cubic algebra Iso3(1.3). This deserves some explanation. The ε are
real parafermions, therefore the transformation properties (3.10) ensure that δx and δθ are
both real. However, since aβ is complex, this means that the cubic algebra (2.3) is realized in
a complexification of the superspace (x, θ). In other words, the algebra cannot be realized on
a real vector space. This is the best possible result in this direction using this ansatz.

3.2. Quaternary superspace

The construction of quaternary superspaces goes along the same lines of the construction of
cubic superspace, but with some differences that we give now. Firstly, the internal variables are
given by order 3 parafermions instead of order 2 parafermions. Furthermore, these variables
are in the spinor representations of the Lorentz algebra (we have two Majorana spinors):
θI

α, θ̄I α̇ with θI
α
† = θ̄I α̇ . Denoting generically by θa and ∂a the order 3 parafermions and

their associated momenta, the order 3 parafermionic algebra is then given by (3.3) and the
quartic relations{
θa1 , θa2 , θa3 , θa4

} = 0,{
θa1 , θa2 , θa3 , ∂a4

} = 5δa1
a4

{
θa2 , θa3

}
+ 5δa2

a4

{
θa1 , θa3

}
+ 5δa3

a4

{
θa1 , θa2

}
,{

θa1 , θa2 , ∂a3 , ∂a4

} = 5δa1
a3

{
θa2 , ∂a4

}
+ 5δa1

a4

{
θa2 , ∂a3

}
+ 5δa2

a3

{
θa1 , ∂a4

}
+ 5δa2

a4

{
θa1 , ∂a3

} − 9
2δa1

a3δ
a2

a4 − 9
2δa1

a4δ
a2

a3 , (3.16)

plus similar relations involving one θ and three ∂ or four ∂ .
Introducing the parameters of the transformation, the quartic supercharges are now given

by

Q = [εI α, ∂I α] + 2i[εI α, θI α]
[
θJ β, θ̄J

β̇
]
σμ

ββ̇Pμ,

Q̄ = −[
∂̄ I

α̇, ε̄I
α̇
] − 2i

[
θJ β, θ̄J

β̇
][

θ̄ I
α̇, ε̄I

α̇
]
σμ

ββ̇Pμ

(3.17)

leading to the transformations

δxμ = [Q, xμ] + [Q̄, xμ] = 2i
([

εI α, θI α

][
θJ β, θ̄J

β̇
] − [

θJ β, θ̄J
β̇
][

θ̄ I
α̇, ε̄I

α̇
])

σμ
ββ̇ ,

δθI
α = [

Q, θI
α

] = εI
α, δθ̄I α̇ = [Q̄, θ̄I α̇] = ε̄I α̇ .

(3.18)

A direct inspection shows that δxμ is real.
Finally, as in the cubic case, the algebra is realized in a complexification of the quaternary

superspace, but now with a Z4 ×Z4 ×Z4 ×Z4-grading, where the corresponding commutation
factor is given by

N(
a, 
b) = ia1(b2+b3+b4)+a2(b3+b4)+a3b4−b1(a2+a3+a4)−b2(a3+a4)−b3a4 . (3.19)

9



J. Phys. A: Math. Theor. 42 (2009) 495202 R Campoamor-Stursberg and M R de Traubenberg

We consider then four successive transformations Q1, . . . ,Q4 with grading gr(ε1) =
gr(ε̄1) = (1, 0, 0, 0), gr(ε2) = gr(ε̄2) = (0, 1, 0, 0), gr(ε3) = gr(ε̄3) = (0, 0, 1, 0), gr(ε4) =
gr(ε̄4) = (0, 0, 0, 1) and define

{|Q1,Q2,Q3,Q4|}N = Q1 {|Q2,Q3,Q4|}N + N(gr(ε1), gr(ε2))Q2 {|Q1,Q3,Q4|}N
N(gr(ε1) + gr(ε2), gr(ε3))Q3 {|Q1,Q2,Q4|}N + N(gr(ε1) + gr(ε2)

+ gr(ε3), gr(ε4))Q4 {|Q1,Q2,Q3|}N
= Q1{|Q2,Q3,Q4|}N + iQ2{|Q1,Q3,Q4|}N

−Q3{|Q1,Q2,Q4|}N − iQ4{|Q1,Q2,Q3|}N, (3.20)

with {|Qi,Qj ,Qk|}N given by (3.13), but with commutator factor (3.19) instead of (3.12).
As in section 3.1, we can easily check that {|Q1,Q2,Q3,Q4|}N vanishes on any polynomial
on θ and generate a spacetime translation with a complex parameter.

3.3. Fermions for higher order superspaces

In principle, the variables θ should satisfy the Roby algebra {θ, θ, θ} = 0 for cubic extensions
and the Roby algebra {θ, θ, θ, θ} = 0 for quartic extensions, with no more relations among
the θ ’s but [[θ, θ ], θ ] = 0. However, if we ‘relax’ these assumptions, this gives rise to
the possibility of realizing higher order algebras using only fermions. This realization can
be put on the same footing with the realization of the algebra in relation with the Noether
theorem, where the algebra is realized by means of bosons and fermions. The only relevant
relations in the construction of ternary (resp. quaternary) superspaces are equations (3.3) and
{θ, θ, θ} = 0 (resp. {θ, θ, θ, θ} = 0). It turns out that usual fermions do satisfy (3.3) and (3.7)
or (3.16) (but with a different normalization for the last equations). This leads to an alternative
construction of higher order superspaces, with usual fermions instead of parafermions. Of
course that in the cubic case, this possibility is excluded since the generators Vμ are in the
vector representation of the Lorentz algebra. Indeed, in this case, superfields (see section 4)
will automatically generate commuting fermions or anticommuting bosons. However, for
extensions involving spinors, this possibility is still open. If one considers the quartic algebra
(2.5), it is straightforward to verify that it admits generalization in any spacetime dimensions.
As happens for supersymmetric theories, these extensions depend on the spacetime dimension
and of the properties of spinors. As we now show, there is one spacetime dimension where
these quartic algebras present some exceptional features, namely D = 10.

Before giving the analog of (2.5) in ten spacetime dimensions, lets us recall some
properties of spinors which are useful for us. (For more details one can see, e.g. [30].)
Dirac spinors can be defined in any spacetime dimensions and Weyl spinors in even spacetime
dimensions. A Majorana (or pseudo-Majorana) spinor, that is a real spinor, can be defined
in D = 4, 8, 9, 11 (mod. 8) and a Majorana Weyl spinor is only defined in D = 10
(mod. 8). In this brief section, we are mainly interested in the minimal quartic extensions,
that is, when real spinors (or real Weyl spinors) do exist, thus when D = 9, 10 or D = 11.
Furthermore, since our extensions involve fully symmetric product, we consider the case
where the charge conjugation matrix is symmetric. If �M are the γ -matrices in D-dimensions
and C the charge-conjugation matrix defined by

(�M)t = ±C�MC−1, (3.21)

where Mt denotes the transpose of the matrix M. Both signs are possible when D is even and
the sign of the RHS is fixed when D is odd. For D = 9, the matrices C and �MC are both
symmetric (C is denoted by C+) although in D = 10, there is one choice of C (denoted C+) that
ensures that C+ and �MC+ are both symmetric. The other choice of C (denoted C−) implies

10
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that we have C− antisymmetric and �MC− symmetric. Thus, when D = 9, 10 Majorana
(Weyl) spinors exist together with a symmetric charge conjugation matrix.

Now we are ready to give the quartic extension of the Poincaré algebra. As mentioned
previously, these extensions exist in any spacetime dimensions, but due to the special properties
of Dirac-matrices in D = 9, 10, these extensions are simpler in these cases. Since they present
some analogies, they will be presented on the same footing. Consider QA a Majorana spinor
and �M, M = 0, . . . , 8 (resp. M = 0, . . . , 9) the Dirac �-matrices in D = 9 (resp. D = 10)9.
The quartic extension analogous to (2.5) is given by

{QA1 ,QA2 ,QA3 ,QA4} = C+A1A2(�
MC+)A3A4PM + C+A1A3(�

MC+)A2A4PM

+ C+A1A4(�
MC+)A2A3PM + C+A2A3(�

MC+)A1A4PM

+ C+A2A4(�
MC+)A1A3PM + C+A3A4(�

MC+)A1A2PM. (3.22)

Among these two extensions, the D = 10 quartic extension of the Poincaré algebra is very
special. There exist two charge conjugation matrices C+ and C− with different properties
of symmetry. As in the preceding subsection, one can define a quaternary supercharge,
considering order 3 parafermions in the Majorana representation of SO(1, 9). If we denote
by θA, ∂A the order 3 parafermions and by εA the parameters of the transformation, we have
that

Q = [εA, ∂A] + C−BC[θB, θC] (�C+)AD[εA, θD]. (3.23)

However, in this case, one is also able to construct a quaternary supercharge with usual
fermions. Introducing ψA, ∂A real Grassmann variables (in the Majorana representation
of SO(1, 9)) and their associated derivative, we can construct in D = 10 the quaternary
supercharges using only fermions

QA = ∂A + (C−BCψBψC) (�C+)ADψD. (3.24)

Of course, likewise in section 3.2, the algebra is realized with multiple commutators in a
complexification of the superspace. It is important to point out that this realization is possible
due to the special properties of the C±−matrices in ten spacetime dimensions. Finally, looking
to the algebraic structure (3.22) and its differential realization (3.24), one may wonder whether
this quartic relation is related with type IIA supersymmetry [26]?

To conclude this section let us mention that similar (complex) variables were used in
[25] in a different context. In addition, order 2 paragrassmann algebras were used for the
description of a superspace associated with parasupersymmetric extensions of the Poincaré
algebra in [20].

4. Superfields

In the previous section, we were able to construct an adapted superspace, where the underlying
algebra (2.3) and (2.5) are realized in a differential way. Considering functions of the variables
(3.2) (and its quartic analogue) gives us the opportunity to obtain various representations of
the algebra (2.3) or (2.5). In analogy with supersymmetric theories, these functions will be
called superfields. Since the definition of superfields is analogous in the ternary and quaternary
cases, we study the first case with many details, the second being obtained in a straightforward
manner. In addition, we will analyze the extremely important problem of the existence of

9 In D = 10, the charge conjugation matrices C+ or C− connect left-handed to right-handed spinors. This means
that we cannot consider a quartic extension of the Poincaré algebra with only a Weyl spinor. This can be seen in an
equivalent way. Indeed, if ψL denotes a left-handed spinor, we have that ψL ⊗ ψL = [1] ⊕ [3] ⊕ [5]+ with [p] a
p-form and [5]+ a self-dual five-form.
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covariant derivatives. Although some serious obstruction exist in the full general case, slight
modifications will enable us to find operators D acting like covariant derivatives, in both the
ternary and quartic cases. However, it turns out that we obtain, with this modification, an
interesting effect, namely spacetime translations of null vectors.

4.1. Ternary superfields

In what follows, we define a scalar superfield, i.e. a superfield invariant under Lorentz
transformations. We then identify the various representations of the Lorentz algebra together
with its spin content, which appears in the decomposition of the scalar superfield. We also
analyze the possibility to construct another type of superfields using the so-called Green ansatz.
A scalar superfield is given by a function

�(x, θ). (4.1)

Developing (4.1), with respect to the θ , we get monomials in the parafermionic variables θ .
The first of the relations in (3.3) and (3.7), respectively, imply the identity

θμθνθρ + θρθνθμ = 0. (4.2)

Upon successive application of the identity (4.2), we get the relation (θμθνθρ)3 = 0. It can
be shown that the relations (4.2) ensure that we have a finite number of monomials in the
development of the superfield �. To develop equation (4.1), we have to identify its components
with respect to the Lorentz group. A series of results upon parafermions, that we recall now,
has been established. Given an arbitrary monomial of degree n, say θα1 · · · θαn , it can be
written as a linear combination of terms of the shape (see [4, 28] for details on the method)

[θμ1 , θν1 ] · · · [θμp , θνp ]{θρ1 , . . . , θρq },
2p + q = n, 0 � q � 2, 0 � αμ1 , . . . , αμp , αν1 , . . . , ανp , αρ1 , . . . , αρq � 3.

(4.3)

The second result is even more interesting for our approach. It is known that an
arbitrary tensor of order n decomposes into irreducible representations of the Lorentz group
characterized by a certain Young tableau [27]. Moreover, multiplicity of representations in
the above decomposition is generally greater than 1. However, for order 2 parafermions (3.3),
(3.7) the situation changes drastically. If we define Pn = {θα1 · · · θαn, 0 � α1, . . . , αn � 3},
it turns out that Pn contains one and only one irreducible subspace corresponding to each
possible Young diagram of n squares whose first row consists of not more than two squares
[4, 29] (analogous properties are equally valid for order p parafermions). This property
of multiplicity of equivalent representations is one of the most appealing characteristics of
parafermions. Technically, since to each allowed Young diagram there corresponds only one
irreducible representation, we are able to chose the Young tableaux which gives us the more
convenient results.

We will not give a systematic study of the decomposition of the superfield � upon the
various Young tableaux, since these computations are straightforward but lengthy. We only
give the general method to identify the spin content of the fields appearing in the decomposition
of the superfield �. We first recall that, in order to identify a representation associated with a
given Young tableau, one has to define the Young symmetrizer associated with the considered
Young tableau. It is written as P = SA, i.e. we first antisymmetrize the columns and then

12
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symmetrize the rows. As an illustration, we give one example. Consider the representation
associated with the Young tableau10

1 2
3

its Young symmetrizer is given by P = 1
3 (1 + (12))(1 − (13)) (where (ab) means the

transposition of a and b) and correspondingly it leads to the representation

PθM1θM2θM3 = 1
3 {θM1 , θM2}θM3 − 1

3 {θM2 , θM3}θM1 .

In what follows, the letters M,N = 0, . . . , 4 correspond to the five-dimensional indices and
we have identified θ = θ4. Proceeding along the same lines, we obtain 17 representations,
varying from the trivial representation to the one-dimensional representation specified to the
Young tableau

.

The tensors appearing in this decomposition can be seen to constitute irreducible
representations of GL(1, 4), thus to identify representations of SO(1, 3), we first have to
identify its GL(1, 3) content and then we have to extract traceless tensors. For instance, the
GL(1, 4)-tensor {θM, θN } gives rise to the GL(1, 3) tensors {θμ, θν} and {θμ, θ}. The first
one leads then to θμθμ and {θα, θβ} − 1

2θμθμηαβ . Having identified the SO(1, 3) content of
the decomposition of the various fields, we can now identify the spin or the helicity content of
the various representations. For the former identification, corresponding to massive particles,
we have to study the embedding so(3) ⊂ so(1, 3), although for massless particles, we have to
decompose the various tensors according to the reduction chain so(2) ⊂ so(1, 3). Considering
only non-isomorphic representations of so(1, 3), we obtain for the massive case

= 1̃ ⊕ 3̃, = 1̃ ⊕ 3̃ ⊕ (5̃ ⊕ 1̃), = 2 × 5̃ ⊕ 3 × 3̃ ⊕ 1̃,

= 3 × 5̃ ⊕ 3̃ ⊕ 2 × 1̃, = 2 × 3̃,

(4.4)

where the representation of dimension 2s + 1 corresponds to a particle of spin s.
Thus, a general superfield decomposes into the representations obtained in the process

above, and corresponds to a given representation of the complexification of the algebra (2.3).
It turns out that this representation is reducible. Furthermore, as it is the case in usual
supersymmetry, it should certainly be interesting to construct constraint superfields in order
to obtain various models invariant under equations (2.3). Having the decomposition of the
field � into the monomials in θ , and using (3.10), we are in principle able to obtain the
transformation properties for the various components of �.

At this point, an interesting additional possibility to construct slightly different superfields
emerges naturally. It is well known that a physically important representation of the
parafermionic algebra exists, namely the Green ansatz given by

θM = 1√
2

(
θM
(1) + θM

(2)

)
, ∂M = 1√

2

(
∂

(1)
M + ∂

(2)
M

)
, (4.5)

10 If along the same lines, one calculates the representation associated with the Young tableau 1 3
2 one obtains

1
3 [θM3 , [θM1 , θM2 ]], which vanishes.
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such that following relations are satisfied:{
θM
(i), θ

N
(i)

} = 0,
[
θM
(1), θ

N
(2)

] = 0,{
∂

(i)
M , θN

(i)

} = δM
N,

[
∂

(1)
M , θN

(2)

] = 0,
[
∂

(2)
M , θN

(1)

] = 0,{
∂

(i)
M , ∂

(i)
N

} = 0,
[
∂

(1)
M , ∂

(2)
M

] = 0.

(4.6)

This means that fermions in the same subspace anticommute, while fermions in different
subspaces commute. The normalization in (4.5) is chosen to ensure that the relations (4.6)
reproduce equations (3.3) and (3.7). Introducing fermionic oscillators (ηM, ∂ηM ), the Green
ansatz can be reformulated as

θM = 1√
2
(ηM ⊗ 1 + 1 ⊗ ηM), ∂M = 1√

2
(∂ηM ⊗ 1 + 1 ⊗ ∂ηM ). (4.7)

It is important to emphasize that, with the representation (4.6), we gain quadratic relations
between the paragrassmann variables and their derivatives. This implies in particular that

∂μ(θν) = 2δμ
ν, ∂μ(θνθρ) = 2δμ

νθρ, ∂1((θ
2)2θ1) = −2(θ2)2, (4.8)

etc, holds. Within the Green ansatz, the supercharges then become

V = ε
μ

i ∂i
μ − (

θ2ε
μ

1 + θ1ε
μ

2

)
θ1.θ2Pμ. (4.9)

It is obvious that an arbitrary monomial in the paragrassmann variables can be written
as a monomial in its Green component, but the converse is of course generally wrong. The
precise relation between these two types of polynomials have been studied in detail in [4].
As a consequence, the set of polynomials in the Green components is larger than the set of
polynomials in the paragrassmann variables. This opens the possibility to define an ‘extended’
superfield which depends on the Green components of the parafermions θ instead of θ itself:

φ̃
(
xμ, θM

1 , θM
2

)
. (4.10)

Observe that this implies that the superfield (4.10) looks like an N = 2 superfield. In this
analogy, there are however some differences that should be observed carefully. Indeed, the
variables θM

i are Lorentz vectors and θM
1 commute with θM

2 . With this decomposition, we
have the identity

φ̃
(
xμ, θM

1 , θM
2

) =
4∑

p1,p2=0

A[p1,p2]M1···Mp1 ;N1···Np2
θ

M1
1 · · · θNp1

1 θ
N2
2 · · · θNp2

2 . (4.11)

It should be taken into account that, in the decomposition above, the tensors A[p1,p2] are
not in irreducible representations of GL(1, 4) (and a forciori of SO(1, 3)). It is, however,
not difficult to decompose the above product. Using the isomorphism between a p- and an
(4 − p)-form, only a few products have to be identified. In contrast to the superfield (4.1),
here we find that multiplicities for the component representations can be greater than 1, i.e.
we no more obtain multiplicity free reductions.

In any physical application, a central object in the construction of invariant Lagrangians
is the covariant derivative, which commutes with V. Indeed, if an operator D such that
the condition [D,V ] = 0 is satisfied can be found, then the latter can be interpreted as a
covariant derivative. This is a consequence of the Jacobi identity, which in connection with
the considered operator D implies the following relation:

δ[D,�] = [Q, [D,�]] = [D, [Q,�]] = [D, δ�].

A routine but cumbersome computation shows that the construction of such a covariant
derivative using (3.9) does not work. However, if we insist to obtain a covariant derivative,
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the obstructions can be surmounted by slightly modifying V in equation (3.9). An admissible
variation for this purpose is given if we define the corresponding operator as

V = [εμ, ∂μ] +
(
[θ, εμ][θμ, θα] + [θ, θμ][εμ, θα] + [θ, θμ][θμ, εα]

)
Pα,

D = [θ, ∂] + [θ, θμ][θμ, θα]Pα,
(4.12)

where ∂ is the ‘derivative’ associated with the variable θ . Now, using the relation
[[θα, θβ], θγ ] = 0, we finally get after some computation to the desired identity [D,V ] = 0.
This fact enables us to define a constraint superfield as a superfield satisfying the condition

[D,�c] = 0.

Now observe that, since the yμ are commuting variables and the conditions [D, θμ] = 0 and
[D, yμ] = 0 for yμ = xμ − [θ, θν][θν, θ

μ], the preceding commutator means that �c takes a
particularly simple expression

�c(y
μ, θμ) (4.13)

and does not depend explicitly on the variable θ . This has the interesting consequence
concerning the decomposition of the field (4.13) upon the rules given previously, namely,
that only GL(1, 3) tensors have to be considered. Following this procedure, it follows, in
particular, that {|V1, V2, V3|}N .xμ vanishes identically. In particular this means that the cubic
extension of the Poincaré algebra associated with (4.12) induces a spacetime translation of a
null vector. This point will be commented at the end of this section.

4.2. Quaternary superfields

The construction of quaternary superfields goes along the same lines as the construction of
ternary superfields. We would like, however, to mention some interesting features. Consider
the D = 10 case. Looking at the supercharges given by (3.23) or (3.24), it is not difficult to
see that a covariant derivative commuting with QA (or with Q) cannot be found. However, as
done already for the ternary case, a slight modification of equation (3.23) or (3.24) allows us
to find operators that can be seen as covariant derivatives. We illustrate the procedure with
paragrassmann variables. The key step is to introduce

Q = [εA, ∂A] + C−AB[θA, θB][εC, θD](�MC−)CDPM

−C−AB[εA, θB][θC, θD](�MC−)CDPM,

DA = ∂A − C−ABθB[θC, θD](�MC−)CDPM + C−BC[εB, θC]θD(�MC−)DAPM.

(4.14)

Using (3.3), a direct computation shows that [DA,Q] = 0 holds. Further, since the RHS
of (4.14) involves commutators, we obtain that the action of Q1Q2Q3Q4 on the spacetime
vanishes because of the identity

[Q1, [Q2, [Q2, [Q4, x
M ]]]] = 0.

At this point we observe a quite interesting property (analogous to what happens in the cubic
case) that arises at once from this consideration: the quartic extension of the Poincaré algebra
considered above induces a spacetime translation of a null vector.

Another remarkable consequence of this modification concerns the algebraic structure of
the extension. In contrast to the previously analyzed ternary case, here a Z2 × Z2 × Z2 × Z2-
grading is enough to ensure the closure of the algebra via

[Q1,Q2,Q3,Q4] =
∑
σ∈S4

ε(σ )Qσ(1)Qσ(2)Qσ(3)Qσ(4),
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where ε(σ ) denotes the signature of the permutation σ . With these specifications, we avoid
completely the use of the complexification of the algebra. We close this section with the
following comments. As we have seen, if we impose the existence of a covariant derivative
either in the cubic case or the quartic case, we automatically get that the higher degree
extensions considered in this paper generate naturally a spacetime translation of null vectors.
Such a possibility is obviously excluded in usual supersymmetry. Indeed, recall that when
we are studying massless representations (or massive representations with appropriate central
charges, the so-called BPS-saturated states), half of the generators are inactive and generate
a nilpotent subalgebra. The unitarity of the representation (absence of ghosts) forces us to
represent the inactive charges by zero (see, e.g. [31]). However, since we are considering here
cubic and quartic algebras, it is not obvious at that the argument above remains valid. The
consideration of higher order nilpotent extensions of the Poincaré algebra deserves further
investigation. Let us mention that some kind of ‘nilpotent supersymmetry’ in connection with
the previous remark has already been considered, in the context of pure spinors and BRST
symmetry (see [32] and references therein).

5. Conclusions

We have shown that parafermions are the relevant variables to construct an adapted superspace
for higher order extensions of the Poincaré algebra (order 2 parafermions for cubic extensions
and order 3 parafermions for quartic extensions). In particular, this means that we were able
to construct a differential realization of the algebras (2.3) and (2.5) leading to an appropriate
superspace. Among the quartic extensions, the D = 10 case presents some interesting
similarities with algebraic structures considered in supersymmetric theories [26].

For the classes of extensions considered, we have further analyzed the possibility of
defining a covariant derivative and have shown that such a fundamental object exists only if
the algebra is ‘nilpotent’ in the sense that it implies a spacetime translation of null vector.
This phenomenon is therefore deeply connected with the inner structure of the extension and
superfields, and its range of validity has still to be explored. Although this point constitutes a
fundamental difference when compared to the requirements of usual supersymmetry, we have
to take into account that the transition to higher order extensions delivers new possibilities
and structural properties, to which the usual phenomenological interpretations are no longer
applicable automatically. For this reason, it cannot be inferred that the existence of such
translations of null-vectors is intrinsically devoid of physical meaning.

Having identified the appropriate superfields associated with higher order extensions of
the Poincaré algebra, one may wonder whether the standard techniques will be useful in the
construction of physical models; since the product of superfields is a superfield, there is in
principle no formal difficulty to construct an interacting theory.

Before closing this paper, let us make a final remark. As we have seen, parafermions
become central for cubic and quartic extensions of the Poincaré algebra. In this context, the
question whether this procedure can be generalized to higher order extensions arises at once.
More specifically, one can ask whether the fully symmetric extensions of order F (based upon
Lie algebras of order F) also imply the possibility of constructing a differential realization
based on order F − 1 parafermions operators. More generally, higher order extensions
with fully antisymmetric brackets, which can be seen as a special case of the color algebras
introduced in [12], can be considered. In a straight analogy one may wonder if parabosons
would constitute the relevant variables in these cases.

To give an argument toward a positive answer to the last question, consider the algebra
Iso(1.3)⊕〈Wμ,μ = 0, . . . , 3〉, that is, the Poincaré algebra together with Lorentz vector Wμ.
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Assume furthermore that the fully antisymmetric trilinear brackets between the operators W

close upon a spacetime translation

[Wμ,Wν,Wρ] = εμνρσP σ , (5.1)

with [A,B,C] = ABC + BCA + CAB − ACB − BAC − CBA and satisfy the identity

[Wμ, [Wν,Wρ,Wσ ]] − [[Wν, [Wρ,Wσ ,Wμ]] + [Wρ, [Wσ,Wμ,Wν]]

− [Wσ , [Wμ,Wν,Wρ]] = 0.

This real algebra appears as a special case of the color algebras introduced in [12]. Now all
the results of section 3.1 can be applied directly with the following substitutions: the fully
symmetric brackets {· · ·} have to be substituted by the fully antisymmetric brackets [· · ·] and
commutators [θ, ∂], [θ, θ ], etc, by the anticommutators {θ, ∂}, {θ, θ}. For instance we have

W = {εμ, ∂μ} + {θ, θμ}{εσ , θμ}Pσ (5.2)

for the supercharge. This means that the algebra (5.1)–(5.2) can be realized in terms of
the order two parabosons θ, ∂ . However there are two differences compared to the algebra
(2.3). Firstly, there is no need to make a kind of ‘Jordan–Wigner’ transformation since∑

σ∈S3
ε(σ )Wσ(1).Wσ(2).Wσ(3).(θ

α1 · · · θαn) = 0. Secondly, although there is an analogous
theorem for the decomposition of parabosons (see subsection 4.1), the corresponding superfield
has an infinite number of degrees of freedom. Furthermore, it as to be noted that this differential
realization induces a spacetime translation of null vectors.

In conclusion, let us mention that the construction outlined here (see (5.1) and (5.2)),
together with the results obtained in this paper, suggests that parafermions and parabosons
could play some role in the description of higher order symmetries, but in a different context
to its historical consideration and use.

Acknowledgments

During the preparation of this work, one of the authors (RCS) was financially supported
by the research projects MTM2006-09152 of the M.E.C. and GR58/4120818-920920 of the
UCM-BSCH.

References

[1] Gentile G 1940 Nuovo Cimento 17 493
[2] Nelson C A 2004 J. Phys. A: Math. Gen. 37 2497
[3] Green H S 1953 Phys. Rev. 90 270
[4] Ohnuki Y and Kamefuchi S 1982 Quantum Field Theory and Parastatistics (Tokyo, Japan: University Press)

Ohnuki Y and Kamefuchi S 1982 Quantum Field Theory and Parastatistics (Berlin: Springer) 489 pp
[5] Greenberg O W 1984 Phys. Rev. Lett. 13 598
[6] Greenberg O W and Messiah A M L 1964 Phys. Rev. B 136 248

Greenberg O W and Messiah A M L 1964 Phys. Rev. B 138 1155
[7] Coleman S and Mandula J 1967 Phys. Rev. 159 1251

Haag R, Lopuszanski J T and Sohnius M F 1975 Nucl. Phys. B 88 257
[8] Bagger J and Lambert N 2007 Phys. Rev. D 75 045020 (arXiv:0611108)
[9] Rausch de Traubenberg M and Slupinski M J 2000 J. Math. Phys. 41 4556 (arXiv:9904126)

Rausch de Traubenberg M and Slupinski M J 2002 J. Math. Phys. 43 5145 (arXiv:0205113)
[10] Goze M, Rausch de Traubenberg M and Tanasa A 2007 J. Math. Phys. 48 093507 (arXiv:0603008)
[11] Rausch de Traubenberg M 2008 J. Phys. Conf. Ser. 128 012060 (arXiv:0710.5368)

Goze M and Rausch de Traubenberg M 2009 J. Math. Phys. 50 063508 (arXiv:0809.4212)
[12] Campoamor-Stursberg R and Rausch de Traubenberg M 2009 J. Gen. Lie Theory Appl. 3 113 (arXiv:0811.3076)
[13] Mohammedi N, Moultaka G and Rausch de Traubenberg M 2004 Int. J. Mod. Phys. A 19 5585 (arXiv:0305172)

17

http://dx.doi.org/10.1007/BF02960187
http://dx.doi.org/10.1088/0305-4470/37/6/038
http://dx.doi.org/10.1103/PhysRev.90.270
http://dx.doi.org/10.1103/PhysRevLett.13.598
http://dx.doi.org/10.1103/PhysRev.159.1251
http://dx.doi.org/10.1016/0550-3213(75)90279-5
http://dx.doi.org/10.1103/PhysRevD.75.045020
http://www.arxiv.org/abs/0611108
http://dx.doi.org/10.1063/1.533362
http://www.arxiv.org/abs/9904126
http://dx.doi.org/10.1063/1.1503148
http://www.arxiv.org/abs/0205113
http://dx.doi.org/10.1063/1.2779956
http://www.arxiv.org/abs/0603008
http://dx.doi.org/10.1088/1742-6596/128/1/012060
http://www.arxiv.org/abs/0710.5368
http://dx.doi.org/10.1063/1.3152631
http://www.arxiv.org/abs/0809.4212
http://www.arxiv.org/abs/0811.3076
http://dx.doi.org/10.1142/S0217751X04019913
http://www.arxiv.org/abs/0305172


J. Phys. A: Math. Theor. 42 (2009) 495202 R Campoamor-Stursberg and M R de Traubenberg

[14] Moultaka G, Rausch de Traubenberg M and Tanasa A 2005 Int. J. Mod. Phys. A 20 5779 (arXiv:0411198)
[15] Moultaka G, Rausch de Traubenberg M and Tanasa A 2004 Proc. 11th Int. Conf. Symmetry Methods in Physics

(Prague, 21–24 June 2004) (arXiv:0407168)
[16] Ahn C, Bernard D and Leclair A 1990 Nucl. Phys. B 346 409

Durand S 1993 Mod. Phys. Lett. A 8 2323 (arXiv:9305130)
Fleury N and Rausch de Traubenberg M 1996 Mod. Phys. Lett. A 11 899 (arXiv:9510108)
Perez A, Rausch de Traubenberg M and Simon P 1996 Nucl. Phys. B 482 325 (arXiv:9603149)
Rausch de Traubenberg M and Simon P 1998 Nucl. Phys. B 517 485 (arXiv:9606188)
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